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1 What is Linear Programming

1.1 Standard LP

Definition 1.1 (Standard LP)

mincTx

s.t.Ax ≤ b, x ≥ 0
(1)

Note on Perspective of geometry c determines the direction of fastest increase, cx denote the

hyperplane with the direction c of fastest increase, and A define the feasible region by clarifying

the intersection of half spaces.

Note on Example of standard LP transformation
1. "Max" to "Min": Adding negative sign to the objective.

2. ai1x1 + · · ·+ ainxn ⩾ bi ⇒ ai1x1 + · · ·+ ainxn −xn+1 = bi, where xn+1 is the surplus

variable.

3. ai1x1 + · · ·+ ainxn ⩽ bi ⇒ ai1x1 + · · ·+ ainxn + xn+1 = bi, where xn+1 is the slack

variable.

4. Free variable: xi = x+i − x−i , x
+
i ⩾ 0, x−i ⩾ 0

5. Absolute variable: |xj | = x+j + x−j , xj = x+j − x−j , adding a constraint x+j · x−j = 0,

note that this constraint can be neglected if cj ≥ 0

6. a+ ormax(a, 0): max 170(3x−240)+−238(240−3x)+ to the following LP. If 3x−240 >

0, y1 increases to 3x− 240 and y2 decreases to 0 (y1 > y2), If 3x− 240 < 0, y1 increases

to 0, y2 decreases to 240− 3x (y1 < y2).

max170y1 − 238y2

s.t.3x− 240 = y1 − y2, y1, y2 ≥ 0
(2)

7. Quantity discount: For example, if p = 4000 for x < 30, p = 2000 for 30 ≤ x < 50

and p = 1500 for x > 50. Using two binary variables: σ2, σ3. If σ2, σ3 = 0, 0, it means

that x2 = x3 = 0. And σ2, σ3 = 0, 1 does not exist. If σ2, σ3 = 1, 0, it means that



1 What is Linear Programming

0 ≤ x ≤ 20, x3 = 0. If σ2, σ3 = 1, 1, it means that 0 ≤ x ≤ 20, x3 ≤ M .

min4000x1 + 2000x2 + 1500x3

s.t.x1 + x2 + x3 = Demand

x2 ≤ 20σ2

x1 ≥ 30σ2

x2 ≥ 20σ3

x3 ≤ Mσ3

(3)

8. bi < 0: Adding negative sign to the whole constraints.

9. x ≤ 0: Let x′ = −x

10. l ≤ x ≤ u

mincTx mincTx+ − cTx−

s.t.Ax ≤ b s.t.Ax+ −Ax− + s1 = b

l ≤ x ≤ u x+ − x− + s2 = u

x+ − x− − s3 = l

x+, x−, s1, s2, s3 ≥ 0

(4)

11. Linear Fractional Programming: Define y = x
eT x+f

and z = 1
eT x+f

, here z in LP1 cannot

be zero, though z in LP2 can be zero, we can show that these two are equivalent. (1) z∗

in LP2 is not zero, then the optimal solution are the same; (2) z∗ in LP2 is zero, then it

means eTx∗ + f → ∞.

LP1 LP2

max
x

cTx+ d

eTx+ f
min
y,z

cT y + dz

s.t. Ax ≤ b s.t. Ay − bz ≤ 0

eTx+ f > 0 eT y + fz = 1

z ≥ 0

(5)

1.2 Basic and Optimal Solution

Definition 1.2 (Feasible, Basic, Optimal, Degenerate Solution)
1. Feasible solution:= a solution which satisfies the constraints Ax = b, x ≥ 0.

2. Basic solution:= x = (xB, xN ), where xB is linear independent m × m matrix,

xN is m× n−m matrix, the solution attained by set xN to zero.

3. Basic feasible solution:= A solution which is feasible and basic.

4. Degenerate basic solution:= A basic solution with one or more basic variables has

the value zero.

5. Optimal feasible solution:= A feasible solution that achieves the minimum value.
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2 Feasibility

6. Optimal basic feasible solution:= A optimal feasible solution which is also basic.

Note on Geometric Interpretation of Degenerate Solution In the two-dimensional space,

degenerate solution denotes the intersection of three or more lines. In the three-dimensional

space, degenerate solution denotes the intersection of four or more planes. The nature of

degenerate solution is that it remains the same point after pivoting.

Note on Several optimal solutions does not mean there exist at least two basic feasible solution

that are optimal, e.g.
{
(x, y) ∈ R2 | −x+ y = 0, x, y ≥ 0

}
. Only one basic feasible solution,

but the whole line is optimal.

1.3 LP with Bounded Variables

mincTx ⇒cT (xB, xN )

s.t.Ax = b ⇒IxB + ĀxN = b̄

l ≤ x ≤ u

(6)

Definition 1.3 (Generalized definition and condition)
Basic solution := xN equal to either the lower bound or upper bound.

Degenerate basic solution := one or more xB = l or u.

Optimality condition := A basic solution x = (x∗B, x
∗
N ) is optimal if

lB ≤ x∗B ≤ uB . (feasibility)

rj ≥ 0 ∀j ∈ L = {j ∈ N |x∗j = lj} and rj ≤ 0 ∀j ∈ U = {j ∈ N |x∗j =

uj}.

2 Feasibility

Definition 2.1 (Feasible Direction)
Let x be an element of a polyhedron P . A vector d ∈ Rn is said to be a feasible direction

at x, if there exists a positive scalar θ for which x+ θd ∈ P .

Lemma 2.1 (Feasible Direction (Bertsimas et al., 1997, P. 129))
For polyhedron P = {x ∈ ℜn | Ax = b,x ≥ 0}, a vector d ∈ Rn is a feasible direction

at x iff Ad = 0 and di ≥ 0 for every i such that xi = 0.
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3 Optimality and Uniqueness

3 Optimality and Uniqueness

Proposition 3.1 (Interior point and Optimality)

mincTx

s.t.Ax ≤ b, x ≥ 0
(7)

The point satisfies that Ax0 < b, x0 > 0 cannot be an optimal solution.

Proof Suppose for the sake of contradiction that there exists another point x0 ± εc > 0 and

A(x0 ± εc) < b, then we show that cT (x0 ± εc) = cTx0 ± ε||c||, that is, the new point is more

optimal than the former one.

Next we construct ε > 0 that we want, for any x0+εc > 0,x0, x0i > 0 must hold. However,

ci < 0 may occur, we let ε < min{ xi
|ci|}∀ci < 0. For A(x0 + εc) < b, in each row, we want∑n

i=1 ai(xi + εci) < bi. Thus, we can let ε < min{ bi−
∑n

i=1 aixi∑n
i=1 aici

}. ■

Theorem 3.1 (Optimality Conditions (Bertsimas et al., 1997, P. 129))
Consider the problem of minimizing cTx over a polyhedron P

1. A feasible solution x is optimal iff cTd ≥ 0 for every feasible direction d at x

2. A feasible solution x is unique optimal iff cTd > 0 for every nonzero feasible

direction d at x

Theorem 3.2 (Conditions for a unique optimum (Bertsimas et al., 1997, P. 129))
Let X be a basic feasible solution with basis B

1. If the reduced cost of every nonbasic variable is positive, then x is the unique

optimal solution.

2. If x is the unique optimal solution and is nondegenerate, then the reduced cost of

every nonbasic variable is positive.

4 LP based on Basis and Topological Space

4.1 Caratheodory’s theorem

Proposition 4.1 (Caratheodory’s theorem)
Let A1, . . . ,An be a collection of vectors in Rm, Let

C =

{
n∑

i=1

λiAi | λ1, . . . , λn ≥ 0

}
Then any element of C can be expressed in the form

∑n
i=1 λiAi, with λi ≥ 0, and with at

most m of the coefficients λi being nonzero.
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Proof When n ≤ m, obviously the condition holds. When n > m, consider a polyhedron

Λ =

{
(λ1, . . . , λn) ∈ ℜn |

n∑
i=1

λiAi = y, λ1, . . . , λn ≥ 0

}
This is a standard LP, thus there is at least a extreme point, that is, a basic feasible solution

λ∗ = (λ∗
1, . . . , λ

∗
n). Note that we have at most m linear independent vectors among Ai, thus a

basic feasible solution has at least n − m zero components, which means there are at most m

non-zero components in λ∗. ■

4.2 Feasibility to Basic Feasibility

Theorem 4.1 (Fundamental theorem of Linear Programming)
Given a LP in standard form, where A is a m× n matrix of rank m:

If there is a feasible solution, then there is a basic feasible solution.

If there is an optimal feasible solution, then there is a basic optimal feasible solution.

Remark That is, feasibility must lead to basic feasibility.

Proof [1] A feasible solution ⇐⇒ constraint set is not empty ⇐⇒ polytope is not empty, thus

theorem also can be interpreted as feasibility must lead to basic feasibility. Let x be a feasible

solution, then Ax = b and x ≥ 0. That is, a1x1 + · · · + anxn = b to a1x1 + · · · + akxk = b

(some of xi is zero). There are two possible cases:

1. a1, ..., ak are LIN

2. a1, ..., ak are not LIN

(i) If k = m, then x is a basic solution, Done! If k < m, since Am×n is full rank, then

a1x1 + · · ·+ akxk + ak+10 + · · ·+ am · 0 = b is a basic solution, Done!

(ii) We can find the following equations, let (2)-ε(1)=a1 (x1 − εy1)+ · · ·+ak (xk − εyk) =

b, where ε > 0. And this is another solution to this LP, As ε increases, some of xi− εyi go down

to zero. Repete it, we can get LIN a′1, · · · , a′k. Note that yi can be positive or negative, however,

xi − εyi must be positive when ε is small enough. And some of xi − εyi goes closer to 0 when

ε increases. a1y1 + · · ·+ akyk = 0 (1)

a1x1 + · · ·+ akxk = b (2)

■

Proof [2] This is equal to show that if x is optimal, then x − εy is optimal. When ε is small,

x− εy > 0 then feasible, c⊤(x− εy) = c⊤x− εc⊤y < c⊤x if
∑

c⊤y > 0 (we can choose the

sign of ε arbitrarily). Since x is optimal feasible solution, cTx is the minimal, cT y must equal

to zero. Then x − εy is a optimal solution too, and by choosing ε we can get a optimal basic

solution. ■
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4 LP based on Basis and Topological Space

4.3 Basic Feasible Solution and Extreme Point

Theorem 4.2 (Extreme Point = Basic feasible solution)
Let K be the convex polytope of H = {Ax = b : x ∈ Rn, x ⩾ 0}. A vector x is an

extreme point of K iff x is a basic feasible solution to H .

Proof If side, to show, if x is a basic feasible solution, then x is an extreme point. x is

feasible ⇐⇒ x = (x1, . . . , xm, 0, . . . , 0) where xi ≥ 0 and a1x1 + · · · + amxm = b. Suppose

y = (y1, . . . , ym, ; ym+1, . . . , yn) , z = (n1, · · · , zm; zm+1, . . . , zn) are other solutions in H .

Suppose for the sake of contradiction that ∃α ∈ (0, 1), αy + (1 − α)z = x, i.e., x can be

represented by y and z. Then we have αyi + (1 − α)zi = 0 for all i = m + 1, ..., n, it means

yi = zi = 0∀i = m+1, ..., n. Since a1, ..., am are LIN, there is only one kind of representation,

xi = yi = zi, i = 1, ...,m. Done!

Only if side: Say x is a extreme point. Then (1) a1x1+ · · ·+akxk = b (since x is a feasible

solution). We want to prove that a1, ..., ak are LIN. Assume that a1, ..., ak are not LIN. We can

find (2) a1y1 + · · ·+ akyk = 0. Construct the following equations, then x = 1
2(x̂+ x̄), that is,

x is not an extreme point. Thus a1, ..., ak must be LIN. Done!x̂ = x+ εy (1) + ε(2)

x = x− εy (1)− ε(2)

■

Corollary 4.1 (Nonempty Standard LP always has an extreme point)
If the convex set K corresponding to {Ax = b, x ⩾ 0} is non-empty, then it has at least

one extreme point.

Remark However, this does not mean that every nonempty polyhedron has at least one extreme

point, e.g., the half space
{
(x, y) ∈ R2 | x+ y ≥ 1

}
.

Corollary 4.2 (Optimality and Extreme Point)
If there is a feasible solution that is optimal to a LP, then there is an optimal finite solution

that is an extreme point of the constraint set.

Note on Note that this corollary does not clarify that optimal solution is exactly the extreme

point, since this optimal solution may be at the middle of the optimal line.

Corollary 4.3 (Feasible Region and Finite Extreme Point)
The constraint set K corresponding to {Ax = b, x ⩾ 0} has at most a finite number of

extreme points.

Note on Finite From the perspective of combination, there are at most

 n

m

 = n!
m!(n−m)!

extreme points.
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5 Simplex Method

Note on These three corollary connects solution and extreme point via constraint set.

4.4 Degeneracy

Definition 4.1 (Degenerate)
A basic solution x ∈ Rn is said to be degenerate if more than n of the constraints are

active at x, e.g. aix = bi.

Definition 4.2 (Degeneracy in Standard form)
Consider the standard form polyhedron P = {x ∈ ℜn | Ax = b, x ≥ 0} and let x be

a basic solution. Let m be the number of rows of A. The vector x is a degenerate basic

solution if more than n−m of the components of x are zero.

Lemma 4.1
If two different bases lead to the same basic solution, then this basic solution is degenerate,

but not vice versa.

Proof Assume not degenerate, then the basic solution have n − m zero components, this

uniquely determine m non-zero components, which correspond to a unique choice of basis.

Contradiction.

Counterexample is
{
(x, y) ∈ R2 | x+ y ≥ 0, x− y ≥ 0 x, y ≥ 0

}
, this polyhedron con-

tains only one degenerate point (0, 0), but there is only one choice of basis. ■

Lemma 4.2
For degenerate solution, there is possible for non-basic variable’s reduced cost to be

negative, while it is still a optimal solution.

Proof Counterexample is
{
(x, y) ∈ R2 | x+ y ≥ 0, x− y ≥ 0 x, y ≥ 0

}
. ■

5 Simplex Method

Assumption 5.1 (Non-degeneracy Assumption)
Every basic feasible solution is not degenerate, that is, xi > 0, i =

1, . . . ,m for (x1, . . . , xm, 0, . . . , 0).

5.1 Pivoting: From basis to basis

Definition 5.1 (Pivoting)
Pivoting ⇔ basis change ⇔ one extreme point to another ⇔ one basic solution to another.

Note that the basic solution obtained by pivoting may not be feasible (may negative).
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5 Simplex Method

Suppose we have a modified A′ in this stage, where yi0 is b, and we want to do pivoting

based on A′.

A′ =


1 0 . . . 0 y1,m+1 . . . y1,n y1,0

0 1 . . . 0 y2,m+1 . . . y2,n y2,0

. . . . . . · · · . . .

0 0 . . . 1 ym,m+1 . . . ym,n ym,0


Interpretation of Pivoting From the Perspective of Row: Suppose we want to use xq

(m+ 1 ≤ q ≤ n) to replace xp (1 ≤ p ≤ m), pivoting is exactly

Row p divided by yp,q (only when yp,q ̸= 0).

Rows except Row p minus Row p and times yi,q:

y′ij = yij −
ypj
ypq

yiq, i ̸= p; y′pj =
ypj
ypq

Interpretation of Pivoting From the Perspective of Column: The polytope {Ax = b, x ⩾

0} can be perceived as a linear combination of a1x1+a2x2+· · ·+anxn = b. As for the canonical

form, aj = y1ja1 + · · · + ynjan ∀j = m + 1, . . . , n and b = y10a1 + y20a2 + · · · + ym0am.

Suppose we want to use xq (m+ 1 ≤ q ≤ n) to replace xp (1 ≤ p ≤ m), pivoting is exactly

With aq = ypqap +
∑m

i=1,i ̸=p yiqai, solve for ap, we know ap =
1

ypq
aq −

∑m
i=1,i ̸=p

yiq
ypq

ai.

By substitution with ap, we know aj =
ypj
ypq

aq +
∑m

i=1,i ̸=p

(
yij − yiq

ypq
ypj

)
ai, j =

m+ 1, . . . , n, j ̸= q.

That is, we do a transformation as follows y′ij = yij − yiq
ypq

ypj , i ̸= p

y′pj =
ypj
ypq

5.2 Entering basic variable

There are two ways to select the entering variable, 1st way is selecting the variable with the

most negative reduced cost. However, 2nd way may be a better criterion, if we select the variable

which, when pivoted in, will produce the greatest improvement in the objective function, that is,

select the variable xk corresponding to the index k that minimizes Max
i,yk,i>0

{rk · y0,i/yk,i}, here

xB = y0 = B−1b is the current basic solution, rT = cT − cTBB
−1A is the reduced cost vector,

and yk = B−1ak where ak is the kth column in A.

Proof [2nd way] Note that z = z0 +
∑n

i=m+1 ri · xi, and to min
∑n

i=m+1 ri · xi, since we can

only choose one, it is equal to min {rixi}.

To maintain the feasibility, assume we want to increase xk from 0 to ε for any k =

m + 1, ..., n, and we should hold a1 (x1 − εyik) + · · · + am (xm − εyik) + akε = b and xi −
εyik ⩾ 0 ∀i = 1, ...,m. Thus ε = mini=1,...,m {yi0/yik}. And the whole problem is equal to

mink{rimini {yi0/yik}}, since ri < 0, we can rewrite as mink=m+1,...,nmaxi{ri yi0yik
}. ■
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5 Simplex Method

5.3 Leaving basic variable

Suppose the basic solution is non-degenerate and xi > 0, i = 1, . . . ,m, if we choose

aq, q > m to enter the basis, let ε > 0, then we have

a1x1 + a2x2+ · · ·+ anxn = b

⇓ −ε · (y1qa1 + y2qa2 + · · ·+ ymqam − aq = 0)

a1 (x1 − εy1q) + a2 (x2 − εy2q)+ · · ·+ am (xm − εmq) + εaq = b

(8)

Note that (xi − εyiq) is a feasible solution as long as all xi − εyiq > 0, but not a basic solution.

If all yiq < 0, then as ε increase, all (xi − εyia) > 0, this is a unbounded LP problem.

If some yiq > 0, as ε increase, we have xi − εyiq = 0 for this variable, and we get a new

basic solution. Let εM = mini

(
xi
yiq

: yiq > 0
}

, and the corresponding vector is the one

we want.

If more than one coefficient reduces to zero at ε = εM , the new basic solution is degenerate.

5.4 Optimality Test

Given a basic feasible solutionx = (x1, . . . , xm, 0, . . . , 0), let z0 =
∑m

i=1 ciyi0 (i.e., current

objective). Then the objective function can be rewritten as the type contains z0, and whether there

exists pivoting to optimize
∑n

i=m+1 (ci − zi)xi means whether the current solution is optimal.

z =

n∑
i=1

cixi

=

m∑
i=1

cixi +

n∑
i=m+1

cixi

=
m∑
i=1

ci(yi0 −
n∑

j=m+1

yijxj) +
n∑

i=m+1

cixi (xi = yi0 −
n∑

j=m+1

yijxj)

= z0 +

n∑
i=m+1

(ci − zi)xi (zi =

m∑
k=1

ykjck)

Theorem 5.1 (Optimality Condition)
Given a non-degenerate basic feasible solution with corresponding objective function

value z0:

If ci−zi < 0 for some i, then there is a feasible solution with objective value z < z0.

If the column ai can be substituted for some column in the original basis to yield

a new basic feasible solution, then this new solution will have z < z0. Otherwise

if we found a vector d satisfying Ad = 0, d ≥ 0, c′d < 0 (Bertsimas et al., 1997,

P. 91), the constraint set is unbounded and the objective function value can be made

arbitrarily small.

If ci − zi ≥ 0 for all i, then the solution is optimal.
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5 Simplex Method

Lemma 5.1 (ε-optimal)
For a standard LP, say if |z0 − z∗| ≤ ε, then it would be enough, here z0 is the current

value of simplex. Let
∑

i xi ≤ s, then if M = maxj(zj − cj) ≤ ε/s, then z0 − z∗ ≤ ε.

Proof Note that

|z − z0| = |
n∑

i=m+1

(ci − zi)xi|

≤
n∑

i=m+1

|ci − zi|xi |
∑
i

xi| ≤
∑
i

|xi|

≤ M
n∑

i=m+1

xi zj − cj ≤ M

≤ Ms ≤ ε

■

5.5 Matrix formulation of Simplex Method

Let A = (B|D), x = (xB|xD), and cT = (cTB, c
T
D). Formulating LP with matrix,

Min z = cTBxB + CT
DxD

s.t. BxB +DxD = b ⇒ xB = B−1b−B−1DxD

xB, xD ⩾ 0

(9)

We have z = c⊤BB
−1b +

(
cD

⊤ − C⊤
BB−1D

)
xD, where rD

⊤ := cD
⊤ − cB

⊤B−1D is the

reduced cost vector. We also have a basic solution
(
xB = B−1b, xD = 0

)
.

Initaialization: Given the basis B, the current solution is B−1b.

Step 1: Calculate the relative cost vector rTD = cTD − cTBB
−1D. If rTD ≥ 0, the current

basis is optimal. Otherwise, go to Step 2.

Step 2: Determine which vector to enter the basis by selecting the most negative cost

coefficient. Let it be column q and then B−1aq gives the representation of aq in terms of

the vectors in the current basis B.

Step 3: If all yiq ≤ 0, then stop and the problem is unbounded. Otherwise, calculate the

ratio of yi,0
yi,q

for yi,q > 0, and determine which variable to enter the basis.

Step 4: Update B and the current solution B−1b. Return to Step 1.

5.6 Simplex and Degeneracy

5.7 Modified Simplex Method for LP with Bounded Variables

Given a feasible solution x0.

choose the entering variable be s = argmin{j∈L}∪{k∈U}{rj ,−rk}, and define δ. We will

10



6 Artificial Variable

do the change to make xs to xS = x0S + δθ, θ ≥ 0.

δ = {
1 if xS = lS

−1 if xS = uS

choose the leaving variable: To maintain feasilibity, we need lS ≤ x0S + δθ ≤ uS and li ≤
x0i −δθyiS ≤ ui, i = 1, 2 . . . ,m, thus, θ = min {θS , θl, θu}. Let r = argmin {θS , θl, θu},

xr is the leaving variable we want.

θS = uS − lS , θl = min
{i|δyiS>0}

{
x0i − li
δyis

}
≥ 0, θu = min

{i|δyiS<0}

{
ui − x0i
−δyis

}
≥ 0

6 Artificial Variable

Artificial variable is used to find an initial basic solution.

6.1 Big M

Lemma 6.1 (Lower bound for M )
A finite value for such an M must exist, and it is max{cTBB−1}, here B is the optimal

basis for the primal problem.

Proof Suppose B is the optimal basis for the primal problem and x∗ is the corresponding

optimal solution, it is equal to discuss the problem of introducing multiple new variables and

keep the optimality. Thus we need the reduced cost for these new variables being non-negative,

that is, rxa = M − cTBB
−1I ≥ 0. ■

6.2 Two phase

7 Transportation Problem

Primal Dual

min
∑
i,j

cijxij max
m∑
i=1

aiui +
n∑

j=1

bjvj

s.t.
n∑

j=1

xij = ai for i = 1, . . . ,m s.t. ui + vj ⩽ cij , ∀v, j

m∑
i=1

xij = bj for j = 1, . . . , n

xij ⩾ 0 ∀v, j

(10)
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